位置:首页 > 数据库 > SQL在线教程 > SQL GROUP BY(分组)

SQL GROUP BY(分组)

SQL GROUP BY子句用于协同SELECT语句用来安排相同的数据分组。

GROUP BY子句在SELECT语句的WHERE子句之后并ORDER BY子句之前。

语法

GROUP BY子句的基本语法如下。GROUP BY子句中必须遵循WHERE子句中的条件,如果使用必须先于ORDER BY子句。

SELECT column1, column2
FROM table_name
WHERE [ conditions ]
GROUP BY column1, column2
ORDER BY column1, column2

例子:

考虑到CUSTOMERS表具有以下记录:

+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
|  6 | Komal    |  22 | MP        |  4500.00 |
|  7 | Muffy    |  24 | Indore    | 10000.00 |
+----+----------+-----+-----------+----------+

如果你想知道每个客户的薪水的总额,使用GROUP BY查询如下所示:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
     GROUP BY NAME;

这将产生以下结果:

+----------+-------------+
| NAME     | SUM(SALARY) |
+----------+-------------+
| Chaitali |     6500.00 |
| Hardik   |     8500.00 |
| kaushik  |     2000.00 |
| Khilan   |     1500.00 |
| Komal    |     4500.00 |
| Muffy    |    10000.00 |
| Ramesh   |     2000.00 |
+----------+-------------+

现在,让我们有如下表,客户表中有以下重名记录:

+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |
|  2 | Ramesh   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | kaushik  |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
|  6 | Komal    |  22 | MP        |  4500.00 |
|  7 | Muffy    |  24 | Indore    | 10000.00 |
+----+----------+-----+-----------+----------+

现在如果你想知道的薪水对每个客户的总金额,使用GROUP BY查询将如下:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
     GROUP BY NAME;

这将产生以下结果:

+---------+-------------+
| NAME    | SUM(SALARY) |
+---------+-------------+
| Hardik  |     8500.00 |
| kaushik |     8500.00 |
| Komal   |     4500.00 |
| Muffy   |    10000.00 |
| Ramesh  |     3500.00 |
+---------+-------------+