位置:首页 > 大数据在线教程 > Sqoop在线教程 > Sqoop导入

Sqoop导入

本章介绍了如何从MySQL数据库中的数据导入到Hadoop的HDFS。 “导入工具”导入单个表从RDBMS到HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据或者在阿夫罗(Avro )和序列文件的二进制数据。 

语法

下面的语法用于将数据导入HDFS。

$ sqoop import (generic-args) (import-args) 
$ sqoop-import (generic-args) (import-args)

示例

让我们以命名为emp, emp_add和emp_contact,这是一个在MySQL数据库服务器名为userdb 数据库的一个例子。

三个表及其数据如下。

表emp:

id name deg salary dept
1201 gopal manager 50,000 TP
1202 manisha Proof reader 50,000 TP
1203 khalil php dev 30,000 AC
1204 prasanth php dev 30,000 AC
1204 kranthi admin 20,000 TP

表emp_add:

id hno street city
1201 288A vgiri jublee
1202 108I aoc sec-bad
1203 144Z pgutta hyd
1204 78B old city sec-bad
1205 720X hitec sec-bad
id phno email
1201 2356742 gopal@tp.com
1202 1661663 manisha@tp.com
1203 8887776 khalil@ac.com
1204 9988774 prasanth@ac.com
1205 1231231 kranthi@tp.com

导入表

Sqoop工具'import'是用来从表中导入表数据到Hadoop的文件系统作为文本文件或二进制文件。

下面的命令用于从MySQL数据库服务器中的emp表导入HDFS。

$ sqoop import \
--connect jdbc:mysql://localhost/userdb \
--username root \
--table emp --m 1

如果成功执行,那么会得到下面的输出。

14/12/22 15:24:54 INFO sqoop.Sqoop: Running Sqoop version: 1.4.5
14/12/22 15:24:56 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/12/22 15:24:56 INFO tool.CodeGenTool: Beginning code generation
14/12/22 15:24:58 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `emp` AS t LIMIT 1
14/12/22 15:24:58 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `emp` AS t LIMIT 1
14/12/22 15:24:58 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop
14/12/22 15:25:11 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/cebe706d23ebb1fd99c1f063ad51ebd7/emp.jar
-----------------------------------------------------
-----------------------------------------------------
14/12/22 15:25:40 INFO mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1419242001831_0001/
14/12/22 15:26:45 INFO mapreduce.Job: Job job_1419242001831_0001 running in uber mode : false
14/12/22 15:26:45 INFO mapreduce.Job: map 0% reduce 0%
14/12/22 15:28:08 INFO mapreduce.Job: map 100% reduce 0%
14/12/22 15:28:16 INFO mapreduce.Job: Job job_1419242001831_0001 completed successfully
-----------------------------------------------------
-----------------------------------------------------
14/12/22 15:28:17 INFO mapreduce.ImportJobBase: Transferred 145 bytes in 177.5849 seconds (0.8165 bytes/sec)
14/12/22 15:28:17 INFO mapreduce.ImportJobBase: Retrieved 5 records.

为了验证在HDFS导入的数据,请使用以下命令。

$ $HADOOP_HOME/bin/hadoop fs -cat /emp/part-m-*

emp表的数据和字段之间用逗号(,)表示。

1201, gopal,    manager, 50000, TP
1202, manisha,  preader, 50000, TP
1203, kalil,    php dev, 30000, AC
1204, prasanth, php dev, 30000, AC
1205, kranthi,  admin,   20000, TP

导入到目标目录

在导入表数据到HDFS使用Sqoop导入工具,我们可以指定目标目录。

以下是指定目标目录选项的Sqoop导入命令的语法。

--target-dir <new or exist directory in HDFS>

下面的命令是用来导入emp_add表数据到'/queryresult'目录。

$ sqoop import \
--connect jdbc:mysql://localhost/userdb \
--username root \
--table emp_add \
--m 1 \
--target-dir /queryresult

下面的命令是用来验证 /queryresult 目录中 emp_add表导入的数据形式。

$ $HADOOP_HOME/bin/hadoop fs -cat /queryresult/part-m-*

它会用逗号(,)分隔emp_add表的数据和字段。

1201, 288A, vgiri,   jublee
1202, 108I, aoc,     sec-bad
1203, 144Z, pgutta,  hyd
1204, 78B,  oldcity, sec-bad
1205, 720C, hitech,  sec-bad

表数据导入子集

我们可以导入表的使用Sqoop导入工具,"where"子句的一个子集。它执行在各自的数据库服务器相应的SQL查询,并将结果存储在HDFS的目标目录。

where子句的语法如下。

--where <condition>

下面的命令用来导入emp_add表数据的子集。子集查询检索员工ID和地址,居住城市为:Secunderabad

$ sqoop import \
--connect jdbc:mysql://localhost/userdb \
--username root \
--table emp_add \
--m 1 \
--where city =’sec-bad’” \
--target-dir /wherequery

下面的命令用来验证数据从emp_add表导入/wherequery目录

$ $HADOOP_HOME/bin/hadoop fs -cat /wherequery/part-m-*

它用逗号(,)分隔 emp_add表数据和字段。

1202, 108I, aoc,     sec-bad
1204, 78B,  oldcity, sec-bad
1205, 720C, hitech,  sec-bad

增量导入

增量导入是仅导入新添加的表中的行的技术。它需要添加‘incremental’, ‘check-column’, 和 ‘last-value’选项来执行增量导入。

下面的语法用于Sqoop导入命令增量选项。

--incremental <mode>
--check-column <column name>
--last value <last check column value>

让我们假设新添加的数据转换成emp表如下:

1206, satish p, grp des, 20000, GR

下面的命令用于在EMP表执行增量导入。

$ sqoop import \
--connect jdbc:mysql://localhost/userdb \
--username root \
--table emp \
--m 1 \
--incremental append \
--check-column id \
-last value 1205

以下命令用于从emp表导入HDFS emp/ 目录的数据验证。

$ $HADOOP_HOME/bin/hadoop fs -cat /emp/part-m-*

它用逗号(,)分隔 emp_add表数据和字段。

1201, gopal,    manager, 50000, TP
1202, manisha,  preader, 50000, TP
1203, kalil,    php dev, 30000, AC
1204, prasanth, php dev, 30000, AC
1205, kranthi,  admin,   20000, TP
1206, satish p, grp des, 20000, GR

下面的命令是从表emp 用来查看修改或新添加的行。

$ $HADOOP_HOME/bin/hadoop fs -cat /emp/part-m-*1

这表示新添加的行用逗号(,)分隔emp表的字段。 

1206, satish p, grp des, 20000, GR