MATLAB运算符
运算符是一个符号,它告诉编译器执行特定的数学或逻辑操作。 MATLAB 设计工作主要是对整个矩阵和阵列。因此,运算符在 MATLAB 工作标和非标量数据。 MATLAB 允许以下类型的基本运算:
-
算术运算符
-
关系运算符
-
逻辑运算符
-
位运算
-
集合运算
算术运算符
MATLAB允许两种不同类型的算术运算:
-
矩阵算术运算
-
阵列算术运算
矩阵的算术运算是线性代数中的定义相同。执行数组操作,无论是在一维和多维数组元素的元素。
矩阵运算符和数组运算符是有区别的句号(.)符号。然而,由于加法和减法运算矩阵和阵列是相同的,操作者这两种情况下是相同的。下表给出了运算符的简要说明:
运算符 | 描述 |
---|---|
+ | 加法或一元加号。A + B将A和B。 A和B必须具有相同的尺寸,除非一个人是一个标量。一个标量,可以被添加到任何大小的矩阵。 |
- | Subtraction or unary minus. A-B subtracts B from A. A and B must have the same size, unless one is a scalar. A scalar can be subtracted from a matrix of any size. |
* |
Matrix multiplication. C = A*B is the linear algebraic product of the matrices A and B. More precisely,
For nonscalar A and B, the number of columns of A must equal the number of rows of B. A scalar can multiply a matrix of any size. |
.* | Array multiplication. A.*B is the element-by-element product of the arrays A and B. A and B must have the same size, unless one of them is a scalar. |
/ | Slash or matrix right division. B/A is roughly the same as B*inv(A). More precisely, B/A = (A'B')'. |
./ | Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B must have the same size, unless one of them is a scalar. |
Backslash or matrix left division. If A is a square matrix, AB is roughly the same as inv(A)*B, except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n components, or a matrix with several such columns, then X = AB is the solution to the equation AX = B. A warning message is displayed if A is badly scaled or nearly singular. | |
. | Array left division. A.B is the matrix with elements B(i,j)/A(i,j). A and B must have the same size, unless one of them is a scalar. |
^ | Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer, the power is computed by repeated squaring. If the integer is negative, X is inverted first. For other values of p, the calculation involves eigenvalues and eigenvectors, such that if [V,D] = eig(X), then X^p = V*D.^p/V. |
.^ | Array power. A.^B is the matrix with elements A(i,j) to the B(i,j) power. A and B must have the same size, unless one of them is a scalar. |
' | Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose. |
.' | Array transpose. A.' is the array transpose of A. For complex matrices, this does not involve conjugation. |
关系运算符
关系运算符标和非标量数据上也能正常工作。关系运算符对数组进行元素元素元素设置为逻辑1(真)的关系是真实的和元素设置为逻辑0(假),它是两个阵列,并返回一个同样大小的逻辑阵列之间的比较。
下表显示了 MATLAB 中的关系运算符:
运算符 | 描述 |
---|---|
< | Less than |
<= | Less than or equal to |
> | Greater than |
>= | Greater than or equal to |
== | Equal to |
~= | Not equal to |
逻辑运算符
MATLAB提供了两种类型的逻辑运算符和函数:
-
Element-wise -这些运算符的逻辑阵列上运行相应的元素。
-
Short-circuit -这些运算上的标量,逻辑表达式。
Element-wise 的逻辑运算符操作元素元素逻辑阵列。符号&,|和〜逻辑数组运算符AND,OR,NOT。
允许短路短路逻辑运算符,逻辑运算。符号 && 和 | | 是短路逻辑符 AND 和 OR。
位运算
位运算符位和执行位位操作。 &,|和^的真值表如下:
p | q | p & q | p | q | p ^ q |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 1 |
假设如果A= 60,B =13,他们现在以二进制格式将如下:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
MATLAB提供位运算,如'位','位'和'位不操作,移位操作等各种函数
以下的表格显示了常用的按位运算:
函数 | 目的/作用 |
---|---|
bitand(a, b) | Bit-wise AND of integers a and b |
bitcmp(a) | Bit-wise complement of a |
bitget(a,pos) | Get bit at specified position pos, in the integer array a |
bitor(a, b) | Bit-wise OR of integers a and b |
bitset(a, pos) | Set bit at specific location pos of a |
bitshift(a, k) | Returns a shifted to the left by k bits, equivalent to multiplying by 2k. Negative values of k correspond to shifting bits right or dividing by 2|k| and rounding to the nearest integer towards negative infinite. Any overflow bits are truncated. |
bitxor(a, b) | Bit-wise XOR of integers a and b |
swapbytes | Swap byte ordering |
集合操作符
MATLAB提供各种功能集合运算,如集,交集和测试组成员等。
下表显示了一些常用的设置操作:
函数 | 描述 |
---|---|
intersect(A,B) | Set intersection of two arrays; returns the values common to both A and B. The values returned are in sorted order. |
intersect(A,B,'rows') | Treats each row of A and each row of B as single entities and returns the rows common to both A and B. The rows of the returned matrix are in sorted order. |
ismember(A,B) | Returns an array the same size as A, containing 1 (true) where the elements of A are found in B. Elsewhere, it returns 0 (false). |
ismember(A,B,'rows') | Treats each row of A and each row of B as single entities and returns a vector containing 1 (true) where the rows of matrix A are also rows of B. Elsewhere, it returns 0 (false). |
issorted(A) | Returns logical 1 (true) if the elements of A are in sorted order and logical 0 (false) otherwise. Input A can be a vector or an N-by-1 or 1-by-N cell array of strings. A is considered to be sorted if A and the output of sort(A) are equal. |
issorted(A, 'rows') | Returns logical 1 (true) if the rows of two-dimensional matrix A are in sorted order, and logical 0 (false) otherwise. Matrix A is considered to be sorted if A and the output of sortrows(A) are equal. |
setdiff(A,B) | Set difference of two arrays; returns the values in A that are not in B. The values in the returned array are in sorted order. |
setdiff(A,B,'rows') |
Treats each row of A and each row of B as single entities and returns the rows from A that are not in B. The rows of the returned matrix are in sorted order.
The 'rows' option does not support cell arrays. |
setxor | Set exclusive OR of two arrays |
union | Set union of two arrays |
unique | Unique values in array |