JOGL 3D图形
在本章中,让我们来学习如何处理3D图形。
绘制3D线
让我们绘制与z轴成简单的线,看到2D和3D线之间的差值。先画一条简单的直线,再画第二条线3个单元到窗口中。
让我们通过程序来绘制3D线:
import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; public class Line3d implements GLEventListener{ private GLU glu = new GLU(); @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glTranslatef( 0f, 0f, -2.5f ); gl.glBegin( GL2.GL_LINES ); gl.glVertex3f( -0.75f,0f,0 ); gl.glVertex3f( 0f,-0.75f, 0 ); gl.glEnd(); //3d line gl.glBegin( GL2.GL_LINES ); gl.glVertex3f( -0.75f,0f,3f );// 3 units into the window gl.glVertex3f( 0f,-0.75f,3f ); gl.glEnd(); } @Override public void dispose( GLAutoDrawable arg0 ) { //method body } @Override public void init( GLAutoDrawable arg0 ) { // method body } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { GL2 gl = drawable.getGL().getGL2(); if( height <=0 ) height =1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Line3d line3d = new Line3d(); glcanvas.addGLEventListener( line3d ); glcanvas.setSize( 400, 400 ); //creating frame final JFrame frame = new JFrame (" 3d line"); //adding canvas to it frame.getContentPane().add( glcanvas ); frame.setSize( frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); }//end of main }//end of class
当编译并执行上述程序,将生成以下输出:
3D形状可以通过glVertex3f()方法,该方法产生上述观点的Z-象限赋予非零值绘制。现在加入剩余行会导致一个三维边缘。
程序开发3D优势:
import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; public class Edge1 implements GLEventListener{ private GLU glu = new GLU(); @Override public void display(GLAutoDrawable drawable) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); gl.glTranslatef(0f, 0f, -2.5f); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(0f,-0.75f, 0); gl.glEnd(); //3d line gl.glBegin(GL2.GL_LINES); //3 units in to the window gl.glVertex3f(-0.75f,0f,3f); gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); //top gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); //bottom gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); } @Override public void dispose(GLAutoDrawable arg0) { //method body } @Override public void init(GLAutoDrawable arg0) { // method body } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) { GL2 gl = drawable.getGL().getGL2(); if(height <=0) height =1; final float h = (float) width / (float) height; gl.glViewport(0, 0, width, height); gl.glMatrixMode(GL2.GL_PROJECTION); gl.glLoadIdentity(); glu.gluPerspective(45.0f, h, 1.0, 20.0); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glLoadIdentity(); } public static void main(String[] args) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas(capabilities); Edge1 b = new Edge1(); glcanvas.addGLEventListener(b); glcanvas.setSize(400, 400); //creating frame final JFrame frame = new JFrame (" 3d edge"); //adding canvas to it frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); }//end of main }//end of class
当编译并执行上述程序,将生成以下输出:
以同样的方式,由显影3D边缘到对应的任何二维四边形的侧面和连接相邻顶点,就可以得到一个3D四边形。
让我们通过程序来绘制一个菱形:
import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; public class Rhombus implements GLEventListener{ private GLU glu = new GLU(); @Override public void display(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glTranslatef(0f, 0f, -2.5f); //drawing edge1..... gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(0f,-0.75f, 0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,3f);// 3 units into the window gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); //top gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); //bottom gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); //edge 2.... gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0.75f,0f, 0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 3f); gl.glVertex3f(0.75f,0f, 3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0f,-0.75f, 3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f, 0); gl.glVertex3f(0.75f,0f, 3f); gl.glEnd(); //Edge 3............. gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,0); gl.glVertex3f(-0.75f,0f,0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,3f); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,0); gl.glVertex3f( 0.0f,0.75f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); //final edge gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f, 0); gl.glVertex3f( 0.0f,0.75f,0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f,3f); gl.glVertex3f( 0.0f,0.75f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f, 0); gl.glVertex3f(0.75f,0f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,0); gl.glVertex3f( 0.0f,0.75f,3f); gl.glEnd(); } @Override public void dispose(GLAutoDrawable arg0) { //method body } @Override public void init(GLAutoDrawable arg0) { // method body } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); if(height <=0) height =1; final float h = (float) width / (float) height; gl.glViewport(3, 6, width, height); gl.glMatrixMode(GL2.GL_PROJECTION); gl.glLoadIdentity(); glu.gluPerspective(45.0f, h, 1.0, 20.0); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glLoadIdentity(); } public static void main(String[] args) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas(capabilities); Rhombus b = new Rhombus(); glcanvas.addGLEventListener(b); glcanvas.setSize(400, 400); //creating frame final JFrame frame = new JFrame (" Rhombus 3d"); //adding canvas to it frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); }//end of main }//end of classimport javax.media.opengl.GL2;
当编译并执行上述程序,将生成以下输出。它显示了一个使用3D线条绘制的菱形
glBegin()方法的预定义参数可用于绘制3D形状。
让我们通过程序绘制一个3D三角(无深度测试):
import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class Triangle3d implements GLEventListener{ private GLU glu = new GLU(); private float rtri =0.0f; @Override public void display(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); // Clear The Screen And The Depth Buffer gl.glClear( GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); gl.glLoadIdentity(); // Reset The View gl.glTranslatef( -0.5f, 0.0f, -6.0f ); // Move the triangle gl.glRotatef( rtri, 0.0f, 1.0f, 0.0f ); gl.glBegin( GL2.GL_TRIANGLES ); //drawing triangle in all dimensions // Front gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Front) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Left Of Triangle (Front) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Right Of Triangle (Front) // Right gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Right) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Left Of Triangle (Right) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Right Of Triangle (Right) // Left gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Back) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Left Of Triangle (Back) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Right Of Triangle (Back) //left gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Left) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Left Of Triangle (Left) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Right Of Triangle (Left) gl.glEnd(); // Done Drawing 3d triangle (Pyramid) gl.glFlush(); rtri +=0.2f; } @Override public void dispose( GLAutoDrawable drawable ) { //method body } @Override public void init( GLAutoDrawable drawable ) { //method body } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { final GL2 gl = drawable.getGL().getGL2(); if(height <=;) height =1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Triangle3d triangle = new Triangle3d(); glcanvas.addGLEventListener( triangle ); glcanvas.setSize( 400, 400 ); final JFrame frame = new JFrame ( "3d Triangle (shallow)" ); frame.getContentPane().add( glcanvas ); frame.setSize( frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); final FPSAnimator animator = new FPSAnimator( glcanvas, 300,true ); animator.start(); } }
当编译并执行上述程序,将生成以下输出。在这里,有旋转的3D三角形的快照。由于该程序不包含深度测试,三角形生成空洞。
为了使实心的三角形,需要使用过glEnable(GL_DEPTH_TEST),以实现深度测试。启用深度缓冲给出黑屏。方法|这可以同时清除使用glClear(GL_DEPTH_BUFFER_BIT GL_COLOR_BUFFERBIT)的颜色被清除。要启用深度测试中的init()方法或glDisplay()方法,编写如下代码:
public void init(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel(GL2.GL_SMOOTH); gl.glClearColor(0f, 0f, 0f, 0f); gl.glClearDepth(1.0f); gl.glEnable(GL2.GL_DEPTH_TEST); gl.glDepthFunc(GL2.GL_LEQUAL); gl.glHint(GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST); }
让我们通过程序绘制一个3D三角(深度测试):
import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class Triangledepthtest implements GLEventListener{ private GLU glu = new GLU(); private float rtri =0.0f; @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel( GL2.GL_SMOOTH ); gl.glClearColor( 0f, 0f, 0f, 0f ); gl.glClearDepth( 1.0f ); gl.glEnable( GL2.GL_DEPTH_TEST ); gl.glDepthFunc( GL2.GL_LEQUAL ); gl.glHint( GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST ); // Clear The Screen And The Depth Buffer gl.glClear( GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); gl.glLoadIdentity(); // Reset The View gl.glTranslatef( -0.5f,0.0f,-6.0f ); // Move the triangle gl.glRotatef( rtri, 0.0f, 1.0f, 0.0f ); gl.glBegin( GL2.GL_TRIANGLES ); //drawing triangle in all dimentions //front gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Left gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Right) //right gl.glColor3f( 1.0f, 0.0f, 0.0f ); gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 0.0f, 1.0f ); gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Left gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Right //left gl.glColor3f( 1.0f, 0.0f, 0.0f ); gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Left gl.glColor3f( 0.0f, 0.0f, 1.0f ); gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Right //top gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 0.0f, 1.0f ); gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Left gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Right gl.glEnd(); // Done Drawing 3d triangle (Pyramid) gl.glFlush(); rtri +=0.2f; } @Override public void dispose( GLAutoDrawable drawable ) { //method body } @Override public void init( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel( GL2.GL_SMOOTH ); gl.glClearColor( 0f, 0f, 0f, 0f ); gl.glClearDepth( 1.0f ); gl.glEnable( GL2.GL_DEPTH_TEST ); gl.glDepthFunc( GL2.GL_LEQUAL ); gl.glHint( GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST ); } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { final GL2 gl = drawable.getGL().getGL2(); if( height <=0 ) height =1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { // TODO Auto-generated method stub final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Triangledepthtest triangledepthtest = new Triangledepthtest(); glcanvas.addGLEventListener( triangledepthtest ); glcanvas.setSize( 400, 400 ); final JFrame frame = new JFrame ( "3d Triangle (solid)" ); frame.getContentPane().add(glcanvas); frame.setSize( frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); final FPSAnimator animator = new FPSAnimator( glcanvas, 300,true ); animator.start(); } }
当编译并执行上述程序,将生成以下输出。
在这里,可以看到旋转的3D三角形的快照。由于该计划包括用于深度测试代码,三角形生成固体。
绘制一个3D立方体
以同样的方式,让我们得出一个3D立方体和应用颜色。通过程序来创建一个3D立方体:
import java.awt.DisplayMode; import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class Cube implements GLEventListener{ public static DisplayMode dm, dm_old; private GLU glu = new GLU(); private float rquad=0.0f; @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glClear( GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); gl.glLoadIdentity(); gl.glTranslatef( 0f, 0f, -5.0f ); gl.glRotatef( rquad, 1.0f, 1.0f, 1.0f ); // Rotate The Cube On X, Y & Z //giving different colors to different sides gl.glBegin( GL2.GL_QUADS ); // Start Drawing The Cube gl.glColor3f( 1f,0f,0f ); //red color gl.glVertex3f( 1.0f, 1.0f, -1.0f ); // Top Right Of The Quad (Top) gl.glVertex3f( -1.0f, 1.0f, -1.0f); // Top Left Of The Quad (Top) gl.glVertex3f( -1.0f, 1.0f, 1.0f ); // Bottom Left Of The Quad (Top) gl.glVertex3f( 1.0f, 1.0f, 1.0f ); // Bottom Right Of The Quad (Top) gl.glColor3f( 0f,1f,0f ); //green color gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Top Right Of The Quad gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Top Left Of The Quad gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Bottom Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Bottom Right Of The Quad gl.glColor3f( 0f,0f,1f ); //blue color gl.glVertex3f( 1.0f, 1.0f, 1.0f ); // Top Right Of The Quad (Front) gl.glVertex3f( -1.0f, 1.0f, 1.0f ); // Top Left Of The Quad (Front) gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Bottom Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Bottom Right Of The Quad gl.glColor3f( 1f,1f,0f ); //yellow (red + green) gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Bottom Left Of The Quad gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Bottom Right Of The Quad gl.glVertex3f( -1.0f, 1.0f, -1.0f ); // Top Right Of The Quad (Back) gl.glVertex3f( 1.0f, 1.0f, -1.0f ); // Top Left Of The Quad (Back) gl.glColor3f( 1f,0f,1f ); //purple (red + green) gl.glVertex3f( -1.0f, 1.0f, 1.0f ); // Top Right Of The Quad (Left) gl.glVertex3f( -1.0f, 1.0f, -1.0f ); // Top Left Of The Quad (Left) gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Bottom Left Of The Quad gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Bottom Right Of The Quad gl.glColor3f( 0f,1f, 1f ); //sky blue (blue +green) gl.glVertex3f( 1.0f, 1.0f, -1.0f ); // Top Right Of The Quad (Right) gl.glVertex3f( 1.0f, 1.0f, 1.0f ); // Top Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Bottom Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Bottom Right Of The Quad gl.glEnd(); // Done Drawing The Quad gl.glFlush(); rquad -=0.15f; } @Override public void dispose( GLAutoDrawable drawable ) { // TODO Auto-generated method stub } @Override public void init( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel( GL2.GL_SMOOTH ); gl.glClearColor( 0f, 0f, 0f, 0f ); gl.glClearDepth( 1.0f ); gl.glEnable( GL2.GL_DEPTH_TEST ); gl.glDepthFunc( GL2.GL_LEQUAL ); gl.glHint( GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST ); } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { final GL2 gl = drawable.getGL().getGL2(); if( height <=0 ) height =1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Cube cube = new Cube(); glcanvas.addGLEventListener( cube ); glcanvas.setSize( 400, 400 ); final JFrame frame = new JFrame ( " Multicolored cube" ); frame.getContentPane().add( glcanvas ); frame.setSize( frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); final FPSAnimator animator = new FPSAnimator( glcanvas, 300,true ); animator.start(); } }
当编译并执行上述程序,将生成以下输出。这说明一个彩色3D立方体。
应用质感的立方体
给出下面的步骤来应用质感的立方体:
File file=new File(“c:\\pictures\\boy.jpg”); Texture t=textureIO.newTexture(file, true); texture=t.getTextureObject(gl);
-
可以要求纹理结合使用gl.glBindTexture(GL2.GL_TEXTURE_2D。纹理)绘制对象的接口方法的立方体。
-
这种方法需要的纹理(INT)参数以及GL2.GL_TEXTURE_2D(INT)
-
执行display()创建需要纹理变量。
-
在init()方法或在glDisplay()方法中的起始行,使用gl.glEnable(GL2.GL_TEXTURE_2D)方法的纹理。
-
创建纹理对象,它需要一个文件对象作为参数,而这又需要用作纹理的对象的图像的路径。
-
处理未发现异常文件。
让我们通过程序应用纹理到多维数据集:
import java.awt.DisplayMode; import java.io.File; import java.io.IOException; import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; import com.jogamp.opengl.util.texture.Texture; import com.jogamp.opengl.util.texture.TextureIO; public class CubeTexture implements GLEventListener { public static DisplayMode dm, dm_old; private GLU glu = new GLU(); private float xrot,yrot,zrot; private int texture; @Override public void display(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT); gl.glLoadIdentity(); // Reset The View gl.glTranslatef(0f, 0f, -5.0f); gl.glRotatef(xrot, 1.0f, 1.0f, 1.0f); gl.glRotatef(yrot, 0.0f, 1.0f, 0.0f); gl.glRotatef(zrot, 0.0f, 0.0f, 1.0f); gl.glBindTexture(GL2.GL_TEXTURE_2D, texture); gl.glBegin(GL2.GL_QUADS); // Front Face gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, 1.0f); gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, 1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, 1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, 1.0f); // Back Face gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, -1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, -1.0f); // Top Face gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f(-1.0f, 1.0f, 1.0f); gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f( 1.0f, 1.0f, 1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, -1.0f); // Bottom Face gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f(-1.0f, -1.0f, -1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f( 1.0f, -1.0f, -1.0f); gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, 1.0f); gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, 1.0f); // Right face gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, -1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, 1.0f); gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, 1.0f); // Left Face gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, -1.0f); gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, 1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, 1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, -1.0f); gl.glEnd(); gl.glFlush(); //change the speeds here xrot+=.1f; yrot+=.1f; zrot+=.1f; } @Override public void dispose(GLAutoDrawable drawable) { // method body } @Override public void init(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel(GL2.GL_SMOOTH); gl.glClearColor(0f, 0f, 0f, 0f); gl.glClearDepth(1.0f); gl.glEnable(GL2.GL_DEPTH_TEST); gl.glDepthFunc(GL2.GL_LEQUAL); gl.glHint(GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST); gl.glEnable(GL2.GL_TEXTURE_2D); try { File im = new File("E:\\office\\boy.jpg "); Texture t = TextureIO.newTexture(im, true); texture= t.getTextureObject(gl); } catch(IOException e) { e.printStackTrace(); } } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) { final GL2 gl = drawable.getGL().getGL2(); if(height <=0) height =1; final float h = (float) width / (float) height; gl.glViewport(0, 0, width, height); gl.glMatrixMode(GL2.GL_PROJECTION); gl.glLoadIdentity(); glu.gluPerspective(45.0f, h, 1.0, 20.0); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glLoadIdentity(); } public static void main(String[] args) { final GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas(capabilities); CubeTexture r = new CubeTexture(); glcanvas.addGLEventListener(r); glcanvas.setSize(400, 400); final JFrame frame = new JFrame (" Textured Cube"); frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); final FPSAnimator animator = new FPSAnimator(glcanvas, 300,true ); animator.start(); } }
当编译并执行上述程序,将生成以下输出。可以看到一个3D立方体与应用上所需的纹理。
附录
GPU - 图形处理单元,它是促进图像的呈现一个特殊的电子设备。
JNI - Java本地接口。使用它,Java可以访问本地方法。
模型 - 它们是从基本的图形元素,如点,线和多边形构造的对象。
像素 - 显示在屏幕上看到的最小单位。
投影 - 映射对象的坐标的二维平面的方法,被称为凸起。
投影矩阵 - 它是二维表面上的物体的线性变换。
渲染 - 由计算机从模型生成的图像的过程。
视口 - 视区是计算机图形学的屏幕上观看区域。