Swift初始化
类,结构和枚举当 Swift 声明后准备初始化类实例。初始值被初始化为存储属性,并且新的实例的值也被进一步进行初始化。创建初始化函数的关键字是通过 init() 方法。Swift 初始化不同于 Objective-C,它不返回任何值。其作用是检查新创建的实例的其处理前初始化。Swift 还提供了“反初始化”过程中执行的内存管理操作当实例被释放。
对于存储的属性初始化器的作用
存储的属性处理实例之前初始化类和结构的实例。 存储属性使用初始分配和初始化值,从而消除了需要调用属性观察者。 初始化用于存储属性:
-
创建初始值
-
要在属性定义中指定默认属性值
-
为特定的数据类型,初始化实例 init()方法被使用,init()函数没有传递参数。
语法
init() { //New Instance initialization goes here }
示例
struct rectangle { var length: Double var breadth: Double init() { length = 6 breadth = 12 } } var area = rectangle() println("area of rectangle is \(area.length*area.breadth)")
当我们使用 playground 运行上面的程序,得到以下结果。
area of rectangle is 72.0
这里结构 'rectangle' 使用成员长宽高为 “double” 的数据类型进行初始化。init()方法被用于为新创建的成员的长度和初始化double 类型的数值。 计算长方形的面积,并通过调用矩形函数返回。
通过默认设置属性值
Swift 语言提供 init()函数来初始化存储的属性值。此外,用户必须规定默认在声明类或结构的成员初始化属性值。当属性的值在整个程序中时一样时,我们可以在声明部分单独声明它,而不是在 init()中初始化。默认情况下,用户设置属性值时能够继承被定义为类或结构。
struct rectangle { var length = 6 var breadth = 12 } var area = rectangle() println("area of rectangle is \(area.length*area.breadth)")
当我们使用 playground 运行上面的程序,得到以下结果。
area of rectangle is 72.0
在这里,代替声明长和宽在 init()中,在声明本身时就初始化值了。
参数初始化
在 Swfit 语言用户提供以初始化参数初始化,使用定义作为 init()的一部分。
struct Rectangle { var length: Double var breadth: Double var area: Double init(fromLength length: Double, fromBreadth breadth: Double) { self.length = length self.breadth = breadth area = length * breadth } init(fromLeng leng: Double, fromBread bread: Double) { self.length = leng self.breadth = bread area = leng * bread } } let ar = Rectangle(fromLength: 6, fromBreadth: 12) println("area is: \(ar.area)") let are = Rectangle(fromLeng: 36, fromBread: 12) println("area is: \(are.area)")
当我们使用 playground 运行上面的程序,得到以下结果。
area is: 72.0 area is: 432.0
局部及外部参数
初始化参数具有类似于的函数和方法参数局部和全局参数名称。局部参数声明用于初始化体,外部参数声明访问用于调用初始化。Swift 函数初始化和方法不同,它们不识别哪些初始化用于该函数调用。
为了克服这个问题,Swift 引入了一个自动外部名称为 init()的每个参数。 这种自动外部名称是等同的每一个初始化参数局部名字之前写入。
struct Days { let sunday, monday, tuesday: Int init(sunday: Int, monday: Int, tuesday: Int) { self.sunday = sunday self.monday = monday self.tuesday = tuesday } init(daysofaweek: Int) { sunday = daysofaweek monday = daysofaweek tuesday = daysofaweek } } let week = Days(sunday: 1, monday: 2, tuesday: 3) println("Days of a Week is: \(week.sunday)") println("Days of a Week is: \(week.monday)") println("Days of a Week is: \(week.tuesday)") let weekdays = Days(daysofaweek: 4) println("Days of a Week is: \(weekdays.sunday)") println("Days of a Week is: \(weekdays.monday)") println("Days of a Week is: \(weekdays.tuesday)")
当我们使用 playground 运行上面的程序,得到以下结果。
Days of a Week is: 1 Days of a Week is: 2 Days of a Week is: 3 Days of a Week is: 4 Days of a Week is: 4 Days of a Week is: 4
不带外部名称参数
当外部名称不需要一个初始化下划线“_”,这是用来覆盖默认行为。
struct Rectangle { var length: Double init(frombreadth breadth: Double) { length = breadth * 10 } init(frombre bre: Double) { length = bre * 30 } init(_ area: Double) { length = area } } let rectarea = Rectangle(180.0) println("area is: \(rectarea.length)") let rearea = Rectangle(370.0) println("area is: \(rearea.length)") let recarea = Rectangle(110.0) println("area is: \(recarea.length)")
当我们使用 playground 运行上面的程序,得到以下结果。
area is: 180.0 area is: 370.0 area is: 110.0
可选属性类型
当一些实例存储的属性不返回任何值该属性使用 “optional” 类型,表示“没有值”则返回特定类型的声明。当存储的属性被声明为“optional”,它会自动初始化值是'nil' 在其初始化过程中。
struct Rectangle { var length: Double? init(frombreadth breadth: Double) { length = breadth * 10 } init(frombre bre: Double) { length = bre * 30 } init(_ area: Double) { length = area } } let rectarea = Rectangle(180.0) println("area is: \(rectarea.length)") let rearea = Rectangle(370.0) println("area is: \(rearea.length)") let recarea = Rectangle(110.0) println("area is: \(recarea.length)")
当我们使用 playground 运行上面的程序,得到以下结果。
area is: Optional(180.0) area is: Optional(370.0) area is: Optional(110.0)
修改常量属性在初始化时
初始化还允许用户修改的常量属性的值。在初始化期间,类属性允许它的类的实例被超类修改,而不是由子类进行修改。考虑在之前的程序“长度”的例子,被声明为主类 “变量”。下面的程序变量 'length' 修改为'常量'变量。
struct Rectangle { let length: Double? init(frombreadth breadth: Double) { length = breadth * 10 } init(frombre bre: Double) { length = bre * 30 } init(_ area: Double) { length = area } } let rectarea = Rectangle(180.0) println("area is: \(rectarea.length)") let rearea = Rectangle(370.0) println("area is: \(rearea.length)") let recarea = Rectangle(110.0) println("area is: \(recarea.length)")
当我们使用 playground 运行上面的程序,得到以下结果。
area is: Optional(180.0) area is: Optional(370.0) area is: Optional(110.0)
默认初始化器
默认初始化提供给基类或结构的所有声明属性的新实例默认值。
class defaultexample { var studname: String? var stmark = 98 var pass = true } var result = defaultexample() println("result is: \(result.studname)") println("result is: \(result.stmark)") println("result is: \(result.pass)")
当我们使用 playground 运行上面的程序,得到以下结果。
result is: nil result is: 98 result is: true
上述程序中定义了类的名字为 “defaultexample'。三个成员函数默认初始化为“studname?”存储值为 'nil' , “stmark”为98和“pass”的布尔值 “true”。 同样,在类中的成员的值可以处理的类成员类型前初始化为默认值。
按成员初始化器结构类型
当不提供由用户自定义的初始化,在Swift 结构类型将自动接收“成员逐一初始化”。它的主要功能是初始化新的结构实例逐一初始化的默认成员,然后在新的实例属性逐一通过名字传递给成员初始化。
struct Rectangle { var length = 100.0, breadth = 200.0 } let area = Rectangle(length: 24.0, breadth: 32.0) println("Area of rectangle is: \(area.length)") println("Area of rectangle is: \(area.breadth)")
当我们使用 playground 运行上面的程序,得到以下结果。
Area of rectangle is: 24.0 Area of rectangle is: 32.0
结构由默认初始化为“length”为“100.0”和“breadth”为“200.0”,初始化期间为它们的成员函数。但长度和宽度的变量值在处理过程中覆盖为24.0和32.0。
初始化委托值类型
初始委托定义调用其它初始化函数初始化。它的主要功能是充当可重用性,以避免在多个初始化代码重复。
struct Stmark { var mark1 = 0.0, mark2 = 0.0 } struct stdb { var m1 = 0.0, m2 = 0.0 } struct block { var average = stdb() var result = Stmark() init() {} init(average: stdb, result: Stmark) { self.average = average self.result = result } init(avg: stdb, result: Stmark) { let tot = avg.m1 - (result.mark1 / 2) let tot1 = avg.m2 - (result.mark2 / 2) self.init(average: stdb(m1: tot, m2: tot1), result: result) } } let set1 = block() println("student result is: \(set1.average.m1, set1.average.m2) \(set1.result.mark1, set1.result.mark2)") let set2 = block(average: stdb(m1: 2.0, m2: 2.0), result: Stmark(mark1: 5.0, mark2: 5.0)) println("student result is: \(set2.average.m1, set2.average.m2) \(set2.result.mark1, set2.result.mark2)") let set3 = block(avg: stdb(m1: 4.0, m2: 4.0), result: Stmark(mark1: 3.0, mark2: 3.0)) println("student result is: \(set3.average.m1, set3.average.m2) \(set3.result.mark1, set3.result.mark2)")
当我们使用 playground 运行上面的程序,得到以下结果。
(0.0,0.0) (0.0,0.0) (2.0,2.0) 5.0,5.0) (2.5,2.5) (3.0,3.0)
初始化函数委派规则
值类型 | 类类型 |
不支持像结构和枚举值类型继承。参照其他初始化函数通过 self.init 完成 | 支持继承。检查所有存储的属性值初始化 |
类继承和初始化
类类型有两种初始化函数,以检查是否定义存储属性接收初始值,即指定初始化和方便初始化函数。
指定初始化和便捷初始化器
指定的初始化 | 便捷初始化器 |
作为一个类主要的初始化 | 作为支持一个类初始化 |
所有的类属性初始化和适当的超类的初始化被要求进一步初始化 | 指定的初始化程序被调用,便捷初始化创建类的实例为特定用例或输入值类型 |
每个类至少有一个指定初始化定义 | 非必须在便捷初始化函数强制规定在类不需要初始化函数。 |
Init(parameters) { statements } | 便捷 init(parameters) { statements } |
程序指定初始化
class mainClass { var no1 : Int // local storage init(no1 : Int) { self.no1 = no1 // initialization } } class subClass : mainClass { var no2 : Int // new subclass storage init(no1 : Int, no2 : Int) { self.no2 = no2 // initialization super.init(no1:no1) // redirect to superclass } } let res = mainClass(no1: 10) let print = subClass(no1: 10, no2: 20) println("res is: \(res.no1)") println("res is: \(print.no1)") println("res is: \(print.no2)")
当我们使用 playground 运行上面的程序,得到以下结果。
res is: 10 res is: 10 res is: 20
程序便捷的初始化
class mainClass { var no1 : Int // local storage init(no1 : Int) { self.no1 = no1 // initialization } } class subClass : mainClass { var no2 : Int init(no1 : Int, no2 : Int) { self.no2 = no2 super.init(no1:no1) } // Requires only one parameter for convenient method override convenience init(no1: Int) { self.init(no1:no1, no2:0) } } let res = mainClass(no1: 20) let print = subClass(no1: 30, no2: 50) println("res is: \(res.no1)") println("res is: \(print.no1)") println("res is: \(print.no2)")
当我们使用 playground 运行上面的程序,得到以下结果。
res is: 20 res is: 30 res is: 50
初始化继承和重写
Swift 默认不允许其子类继承其超类初始化函数为成员类型。继承适用于超类初始化只能在一定程度上,这将在自动初始化程序继承进行讨论。
当用户需要具有在超类,子类中定义的初始化器,初始化函数必须由用户作为自定义实现来定义。 当重写,必须在子类到超类的使用 “override”关键字来声明。
class sides { var corners = 4 var description: String { return "\(corners) sides" } } let rectangle = sides() println("Rectangle: \(rectangle.description)") class pentagon: sides { override init() { super.init() corners = 5 } } let bicycle = pentagon() println("Pentagon: \(bicycle.description)")
当我们使用 playground 运行上面的程序,得到以下结果。
Rectangle: 4 sides Pentagon: 5 sides
指定和便捷初始化在动作中
class Planet { var name: String init(name: String) { self.name = name } convenience init() { self.init(name: "[No Planets]") } } let plName = Planet(name: "Mercury") println("Planet name is: \(plName.name)") let noplName = Planet() println("No Planets like that: \(noplName.name)") class planets: Planet { var count: Int init(name: String, count: Int) { self.count = count super.init(name: name) } override convenience init(name: String) { self.init(name: name, count: 1) } }
当我们使用 playground 运行上面的程序,得到以下结果。
Planet name is: Mercury No Planets like that: [No Planets]
Failable初始化器
用户必须被通知当在定义一个类,结构或枚举值的任何初始化失败时。变量初始化有时会成为一种失败,由于:
-
无效的参数值
-
缺少所需的外部来源
-
有条件阻止初始化成功
若要捕获抛出的初始化方法例外,swift 处理产生一种灵活初始化称为“failable 初始化”通知,是留给被忽视在初始化结构,类或枚举成员。关键字捕获 failable 初始值设定 “init?”。此外,failable 和 非failable 初始化函数不能使用相同的参数类型和名称来定义。
struct studrecord { let stname: String init?(stname: String) { if stname.isEmpty {return nil } self.stname = stname } } let stmark = studrecord(stname: "Swing") if let name = stmark { println("Student name is specified") } let blankname = studrecord(stname: "") if blankname == nil { println("Student name is left blank") }
当我们使用 playground 运行上面的程序,得到以下结果。
Student name is specified Student name is left blank
Failable初始值设定为枚举
Swift 语言提供了灵活性,可以使用 Failable 初始化函数通知用户,从初始化留下来枚举成员值。
enum functions { case a, b, c, d init?(funct: String) { switch funct { case "one": self = .a case "two": self = .b case "three": self = .c case "four": self = .d default: return nil } } } let result = functions(funct: "two") if result != nil { println("With In Block Two") } let badresult = functions(funct: "five") if badresult == nil { println("Block Does Not Exist") }
当我们使用 playground 运行上面的程序,得到以下结果。
With In Block Two Block Does Not Exist
Failable初始化器类
当枚举和结构声明 failable 初始化提醒的初始化失败,在实现中的任意情况。然而, failable 初始化在类中提醒后,才存储属性设置初始值。
class studrecord { let studname: String! init?(studname: String) { self.studname = studname if studname.isEmpty { return nil } } } if let stname = studrecord(studname: "Failable Initializers") { println("Module is \(stname.studname)") }
当我们使用 playground 运行上面的程序,得到以下结果。
Module is Failable Initializers
覆盖一个Failable初始化器
这样初始化用户也有提供子类覆盖超类的failable 初始化。超级类 failable 初始化也可以在子类非 failable 初始化覆盖。
覆盖一个 failable 超类初始化时,nonfailable 子类初始化子类的初始化器不能委派到超类初始化器。
一个nonfailable初始化不能委托给一个failable初始化。
下面给出的程序描述failable和非failable初始化函数。
class Planet { var name: String init(name: String) { self.name = name } convenience init() { self.init(name: "[No Planets]") } } let plName = Planet(name: "Mercury") println("Planet name is: \(plName.name)") let noplName = Planet() println("No Planets like that: \(noplName.name)") class planets: Planet { var count: Int init(name: String, count: Int) { self.count = count super.init(name: name) } override convenience init(name: String) { self.init(name: name, count: 1) } }
当我们使用 playground 运行上面的程序,得到以下结果。
Planet name is: Mercury No Planets like that: [No Planets]
init! Failable初始化器
Swift 提供 “init?”定义一个可选实例failable初始化。要定义特定类型的隐式解包可选的 'int! ' 被指定。
struct studrecord { let stname: String init!(stname: String) { if stname.isEmpty {return nil } self.stname = stname } } let stmark = studrecord(stname: "Swing") if let name = stmark { println("Student name is specified") } let blankname = studrecord(stname: "") if blankname == nil { println("Student name is left blank") }
当我们使用 playground 运行上面的程序,得到以下结果。
Student name is specified Student name is left blank
必需的初始化
声明并初始化每个子类,“required”关键字的需要在init()函数之前定义。
class classA { required init() { var a = 10 println(a) } } class classB: classA { required init() { var b = 30 println(b) } } let res = classA() let print = classB()
当我们使用 playground 运行上面的程序,得到以下结果。
10 30 10